domingo, 11 de enero de 2015

CELOSÍA



En ingeniería estructural, una CELOSÍA es una estructura reticular de barras rectas interconectadas en nodos formando triángulos planos en celosías planas o pirámides tridimensionales en celosías espaciales.

En muchos países se les conoce como armaduras o reticulados. El interés de este tipo de estructuras es que las barras trabajan predominantemente a compresión y tracción presentando comparativamente flexiones pequeñas. El término está  tomado de la celosía arquitectónica tradicional.

Las celosías pueden ser construidas con materiales diversos: acero, madera, aluminio, etc. Las uniones pueden ser articuladas o rígidas. En las celosías de nudos articulados la flexión es despreciable siempre y cuando las cargas que debe soportar la celosía estén aplicadas en los nudos de unión de las barras.

Una cercha es una celosía de canto variable a dos aguas.

Las primeras celosías eran de madera. Los griegos ya usaban celosías de madera para la construcción de algunas casas. En 1570, Andrea Palladio publicó I Quattro Libri dell'Architettura, que contenían instrucciones para la construcción de puentes de celosía fabricados en madera.

Las celosías planas de nudos articulados pueden dividirse desde el punto de vista estructural en:

Celosías simples son celosías estáticamente determinadas, en el que el número de barras y el número de nudos satisface que b + 3 = 2n, pueden ser calculadas mediante las ecuaciones de la estática en alguna de sus modalidades equilibrio de nudos y/o métodos de la estática gráfica. Geométricamente son una triangulación conforme o regular.

Celosías compuestas, son también celosías estáticamente determinadas con b + 3 = 2n que pueden construirse uniendo dos o más celosías simples, de tal manera que cada par comparta una sus articulaciones y se añada alguna barra adicional entre cada par de modo que cualquier movimiento de una respecto de la otra esté impedido. Admiten una reducción al caso anterior.

Celosías complejas, que engloba a cualquier celosía plana que no sea de los tipos anteriores. Son estructuras hiperestáticas para las que se puede usar el método de Heneberg o el método matricial de la rigidez.

Si una celosía plana es de nudos rígidos, entonces es hiperestática con independencia del número de nudos y barras. En esos casos usualmente se calculan de modo aproximado suponiendo que sus nudos son articulados si la son similares a una celosía simple o compuesta, o de modo razonablemente más exacto por el método matricial de la rigidez.

Una celosía se llama estáticamente determinada o totalmente isostática si se aplican sucesivamente las ecuaciones de equilibrio mecánico, primero al conjunto de la estructura, para determinar sus reacciones, y luego a las partes internas, para determinar los esfuerzos sobre cada uno de los elementos que la integran. Estas dos condiciones se llaman:

Isostaticidad externa, cuando es posible calcular las reacciones usando exclusivamente las ecuaciones de la estática. Para que eso suceda el número de grados de libertad eliminados por los anclajes varios de la celosía deben ser a lo sumo de tres, puesto que sólo existen tres ecuaciones independientes de la estática aplicables al conjunto de la estructura.

Isostaticidad interna, cuando es posible determinar los esfuerzos internos de cada una de las barras que forman la estructura, como veremos para que se dé esta condición se requiere una cierta relación entre el número de barras y nudos.

Una celosía plana, sólo puede ser isostática si está formada por nudos articulados y las barras sólo transmiten esfuerzos a otras barras en la dirección de su eje. Eso implica que en una celosía plana hiperestáticamente determinada el momento flector es nulo en todas las barras de la misma, estando solicitada cada barra sólo axialmente. Como una estructura de barras articuladas sólo puede comportarse rígidamente si cada región mínima encerrada por las barras es triangular, las celosías planas estáticamente determinadas están formadas por barras que forman regiones triangulares adyacentes unas a otras.

Además la condición de estar estáticamente determinada conlleva, como vamos a ver, una relación entre el número de barras y nudos. Llamemos b al número de barras y n al número de nudos. Las condiciones de isostaticidad interna y externa requieren que el número de ecuaciones estáticas lineálmente independientes iguale al número de incógnitas:

Empecemos contando el número de incógnitas: si la estructura es externamente isosática las reacciones totales dependerán de tres valores incógnita, por otro lado la condición de isostaticidad interna requerirá que determinemos el valor del esfuerzo axial de cada barra. Esto nos da b+3 incógnitas.

En cuanto al número de ecuaciones de la estática, al no existir momentos flectores y ejercer cada barra sólo esfuerzo según su eje, se puede ver que en cada uno de los n nudos de la estructura las fuerzas verticales y horizontales deben anularse, eso nos da dos ecuaciones por nudo. En total podemos plantear el equilibrio de cada nudo independientemente por lo que el número de ecuaciones totales es de 2n.

1 comentario:

  1. Las celosias en arquitectura contemporáneas son una alternativa flexible y atractiva para las características ornamentales y estructurales exteriores.

    ResponderEliminar